高架橋基礎杭直下のシールド掘削工事における近接影響評価

地域地盤環境研究所 正会員 〇山内 雅基, 稲垣 祐輔, 中井 照夫 大成建設 正会員 原 信行, 内田 泰彦

1. はじめに 名古屋中央雨水幹線下水道築造工事(その2)および(その3)工事は、大深度(土被り厚約50m)かつ長距離(総延長約5km)のシールド掘削工事であり、このうち延長約3kmにわたって名古屋高速道路に平行しており、高架橋基礎杭(以下,橋脚杭)下端部との最小離隔1D程度(約7.5m, D:シールド外径)である.高水圧下における全断面砂礫層のシールド掘進に伴い、掘削領域から橋脚杭に向かってせん断変形が進展し、高架橋へ影響がおよぶことが懸念された.ここでは、事前に実施した弾塑性有限要素解析(以下,FEM解析)の結果と、高架橋に対する現場計測結果¹⁾との比較について示す.

2. 解析条件 有限要素メッシュ図を図-1に示す. FEM 解析は、平面ひずみ条件下で図に示す変位境 界および水理境界のもと、弾塑性構成モデル (Subloading t_{ij} model)²⁰に基づいた弾塑性解析コー mg ド(FEM tij-2D)を採用し、土~水連成解析を実施 した.解析に用いた地盤材料パラメータを表-1に 示す.本解析モデルは、砂も粘土も同じパラメー タを用いて地盤の弾塑性挙動を表現できる特徴を 有している.砂・砂礫土層のパラメータは、乱れ た試料を再構成した供試体を用いた三軸圧縮試験

表-1 地盤材料パラメータ

		基礎情報			圧密特性			せん断特性		過圧密特性	自然堆積構造特性				
	土層	層厚	N値	単位体積 重量	弾性係数	透水係数	圧縮指数	膨潤指数	大気圧下の 間隙比	極限状態の 主応力比	降伏曲面形状 パラメータ	密度と拘束圧 のパラメータ	ボンディング効果 を表すパラメータ	仮想上の密度 増加初期値	
		[m]		$\gamma [kN/m^3]$	$E [kN/m^2]$	<i>k</i> [m/s]	λ	κ	Ν	Rcs	β	α	b	ω_0	
₽	B B	2.95 0.56	2	18.3	5,600		0.0400	0.0040	1.09		11				
	As	2.05	8	17.2	22,400	9.96×10^{-7}	0.0400	0.0040	1.09	3.40	1.1	50.0	0.0	0.0	
	D3U-s1	L 4.20	10	17.0	28,000	7.70 ~ 10					-				
	D3U-s1	F 10.00	16	17.4	44,100		0.0700	0.0070	1.03		1.2				
	D3U-82	6.85	41	17.3	30,800	5.00×10^{-9}	0.1700	0.0050	1 34	4 56	19	200.0		0.5	
	D3L-c2	2 5.90	11	17.6	30,800	2.20×10^{-9}	0.2000	0.0050	1.38	5.09	1.5	100.0	10.0	0.4	
	Dmg-1	4.95	83	19.9	232,400	1 (7) 10-4	0.0400	0.0040	0.61	4.00	1.6		0.0	0.0	
	Dmg-2	13.00	100	19.5	280,000	1.0/ \ 10	0.0400	0.0040	0.58	4.50	1.2	200.0	0.0	0.0	
	Dmc-3	7.30	11	17.0	30,800	1.10×10^{-8}	0.1400	0.0050	1.20	4.57	1.8	20010	10.0	0.4	
	Dms-2	3.20	85	17.6	238,000	1.67×10^{-4}	0.0400	0.0040	0.58	4.50	1.2		0.0	0.0	
	O : (σ_{r} =	O:試験結果 -: 要素シミュレーション (σ _r =210 kPa:赤, 420 kPa:青, 700 kPa:緑) -28						(a)切羽通過時				(b)テール通過時			
	2000						載荷荷重=(切羽圧-地山側圧)×α					載荷荷重=(裏込め注入圧-地山応力)×β			
	3000										力状態を2次元応力	犬能で			
آم	2500	-20					 シールド半径方向の圧力変動割合] 					表現するための補正値]			
Γ.	2000														
-	2000		<u>/</u>			-16	 ش		🖌 (ধ্যায়ু	前面解放応す	η)		A HE		
0					h Manager		t T			$0756 \times D \times (B$	$(-P_{1})^{(4)}$	(+()→) -	- 🖌 🗍 (B:	$=40\%^{(4)}$	
ر ق	1500		-12				₩ → <u></u>			$-0.0756 \times D \div 400$					
Ē			and the second se				<u>5</u>			-0.0/56×D-	-49%,				
长	1000		*	and the second		-8	潤			: 掘削外径 6.5	51 m)	裏込め注入圧(Ps)	地山応力 (P_i)	地山応力(Pi)	
푿							按	-	~~~~~			سر بر ا			
Ē	500					-4									
													裏込め注入圧(Ps)		
	0		and an			0									
	500					1									
	-5000		5	10	15	20			\leftarrow			月日			
			曲曲	ひずみ。	%							Li			
	• •	· + · · · ·	-+-ш -	0 7 ° / cal	_/0] //	•	地山	」側王(Ph)	切羽王 (P_{ch})			テール通過時施	工区間(=1.2m)		
図-2 要素シミュレーション結果例(Dmg-2)															
(三軸圧縮試験(CD条件)の応力~ひずみ関係) 図-3 施工時何里を考慮し											「愿した何里」	セアル			
1	→	18			د بدر	しいかけた	ても 大師とし	L 向几 、 「	++++++	3% 뜻며 Pil 구락	*				
キ		ード	シー	ルドトン	/不ル,	天深度,	砂礫圠	12盛,近	按施上,	狎型性 權	軍成モナル				
連	絡先		₹54	0-008	大阪府ナ	、阪市中	央区大学	手前 2-1	-2 國民會	館大阪城	战ビル 4F	TEL : 06-6	943-9706		

© Japan Society of Civil Engineers

JSCE 令和5年度土木学会全国大会第78回年次学術講演会 - VI-194 -

結果(CD条件)と孔内水平載荷試験結果から決定した.例として,掘削対象土層である Dmg-2の要素シミュレーション 結果を図-2に示す.一方,粘性土層のパラメータは,乱れの少ない試料を用いた定ひずみ速度圧密試験結果と三軸圧縮 試験結果(CU条件)から決定した.比較のために実施した弾性解析では,N値を用いて E=2800×N(kN/m²)³より変形 係数を設定し,弾塑性解析で得られたシールド内空変位を強制変位として作用させた.初期応力は,両解析とも弾塑性 解析結果を使用し,荷重モデルは,施工時荷重(切羽圧と裏込め注入圧)と地山応力の差圧変動に着目したモデル⁴⁰(図-3参照)を設定している.なお,本解析ではトンネル覆工剛性を考慮していない.

3. 解析結果 テール通過時における弾塑性解析結果と弾性解析結果の比較を図-4~図-5 に示す. 偏差応力(σ₁-σ₂)分 布は,弾塑性解析および弾性解析ともにトンネル側部において大きくなる傾向を示した. これは,裏込め注入圧と地山 応力の関係が,トンネル側部ではバランスしたものの,トンネル上部では差圧が大きくなって沈下した結果と考えられ る. 一方,偏差主ひずみ(ε₁-ε₂)分布は,弾塑性解析ではトンネルの両肩部から橋脚杭下端部に向かって局所的に進展し ているのに対して,弾性解析ではトンネル全周にわたって発達する傾向であった. このような弾塑性解析に見られるよ うなせん断変形に伴う局所的なひずみの進展傾向は,弾性解析では表現が困難である.

図-4 偏差応力(σ1-σ2)コンター図

た,つまり,3次元的な裏込め注入圧による影響を2次元状態に変換する際の補正を大きく設定した影響が原因の1つ として考えられる.トンネル掘削問題の定量的な評価については,今後3次元解析が必須と言える.

5. おわりに本施工は、橋脚杭直下において高水圧下で全断面砂礫層を大深度・長距離シールド掘進する難易度の高い施工であったが、トンネル周辺地盤の応力~ひずみ関係を適切に表現できる地盤構成モデルを用いた弾塑性 FEM 解析を実施することによって、通常良く用いられる弾性解析では表現できない各施工段階におけるせん断変形の進展、つまり、砂・砂礫地盤における弾塑性的な挙動を事前に確認することができた.また、本解析手法は、シールド掘進時における施工時荷重を考慮した荷重モデルを採用しており、実施工におけるシールド掘進管理に直結させて検討できることから、有用性は高いと考える.

参考文献 1) 原他:大深度・長距離シールド掘削工事における高架橋の計測管理,土木学会全国大会第78回年次学術講演会(投稿中), 2023. 2) Nakai, T., H. M. Shahin, Kikumoto, M., Kyokawa, H., F. Zhang, and M. M. Farias: A simple and unified three-dimensional model to describe various characteristics of soils, *Soils and Foundations*, pp.1149-1168, 2011. 3) (公社) 日本道路協会:道路橋示方書(IV下部構造編)・同解説, p.188, 2017. 4) 崎谷他:大断面,超近接併設シールドトンネル設計手法の提案,土木学会トンネル工学報告集, Vol.24, II-8, 2014.